Further results on Parity Combination Cordial Labeling

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further results on total mean cordial labeling of graphs

A graph G = (V,E) with p vertices and q edges is said to be a total mean cordial graph if there exists a function f : V (G) → {0, 1, 2} such that f(xy) = [(f(x)+f(y))/2] where x, y ∈ V (G), xy ∈ E(G), and the total number of 0, 1 and 2 are balanced. That is |evf (i) − evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). In thi...

متن کامل

Further Results on Divisor Cordial Labeling

Abstract. A divisor cordial labeling of a graph G with vertex set V is a bijection f from V to {1, 2,... | |} V such that an edge uv is assigned the label 1 if ( ) | ( ) f u f v or ( ) | ( ) f v f u and the label 0 otherwise, then number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a divisor cordial labeling is called a divisor cordial graph. ...

متن کامل

further results on total mean cordial labeling of graphs

a graph g = (v,e) with p vertices and q edges is said to be a total mean cordial graph if there exists a function f : v (g) → {0, 1, 2} such that f(xy) = [(f(x)+f(y))/2] where x, y ∈ v (g), xy ∈ e(g), and the total number of 0, 1 and 2 are balanced. that is |evf (i) − evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). in thi...

متن کامل

Further results on odd mean labeling of some subdivision graphs

Let G(V,E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function f : V (G) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : E(G) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. A graph that admits an odd mean labelin...

متن کامل

On k-cordial labeling

Hovey [Discrete Math. 93 (1991), 183–194] introduced simultaneous generalizations of harmonious and cordial labellings. He defines a graph G of vertex set V (G) and edge set E(G) to be k-cordial if there is a vertex labelling f from V (G) to Zk, the group of integers modulo k, so that when each edge xy is assigned the label (f(x) + f(y)) (mod k), the number of vertices (respectively, edges) lab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Egyptian Mathematical Society

سال: 2020

ISSN: 2090-9128

DOI: 10.1186/s42787-020-00082-8